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INTRODUCTION
With the changes in people's lifestyle and social changes in environmental factors, the incidence of cardiovascular disease 

(CVD) increased year by year, especially the coronary heart disease (CHD) [1]. Atherosclerosis is one of the most common patho-
logical process that leads to CVD. It is characterized by a formation of atherosclerotic plaques in arteries consisting of necrotic 
cores, calcified regions, accumulated modified lipids and various cells [2]. There are several hypotheses to explain the pathogen-
esis of atherosclerosis, such as lipid infiltration, thrombosis, smooth muscle cell clones, endothelial damage response and im-
munity inflammation [3-5]. Suppressor of cytokine signaling (SOCS) protein are inhibitors of cytokine signaling pathways that were 
highlighted in immunity inflammation hypothesis [6]. Cytokines, including interleukins, interferons (IFNs), growth factors et al. have 
essential roles in the development, differentiation and function of immune cells [6]. Most SOCS proteins are induced by cytokines 
and therefore act in a classical negative-feedback loop to inhibit cytokine signal transduction, thus regulating the immunity inflam-
mation response [7]. SOCS3, a sub-family of SOCS, is involved in inflammatory response, because it regulated macrophage and 
dendritic cell activation and was essential for T-cell development and differentiation [7]. Furthermore, it has been reported that loss 
of SOCS3 expression in T cells significantly affects atherosclerotic development [8]. Epidemiological survey showed that estrogen 
might be a beneficial factor in atherosclerosis as the CHD incidence was much higher in men than that in women and postmeno-
pausal women rapidly increased its CHD incidence [9,10]. Several groups have demonstrated the mechanism for the improvement 
of atherosclerosis by estrogen, including the regulation of lipid metabolism [11] and inhibition of smooth muscle proliferation and 
migration [12]. Whether SOCS mediated inflammation inhibition was involved in improvement of atherosclerosis by estrogen has 
not been studied yet. In breast cancer and hepatoma cells, SOCS3 expression were found to be correlated to estrogen level [13,14], 
and might be regulated by the interaction of estrogen response element with SOCS3 promoter [13]. Recent researches reported 
that macrophages play an important role in the development of atherosclerosis [15,16]. Therefore, we focus on the relationship of es-
trogen and the expression of SOCS3 in macrophages, which might be involved in inflammation regulation of atherosclerosis by estrogen.

MATERIALS AND METHODS
Cell cultures

RAW264.7 cells were cultured and maintained in DMEM medium (Hyclone) supplemented with 10% FCS (Hyclone), 100 U/
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mL penicillin, 50 µg/mL streptomycin and 2 mM L-glutamine (supplements from Hyclone). Cells were trypsinized by 0.25% trypsin 
and refreshed every 2-3 days.

Cell treatment with 17β-estrodiol and ICI 182,780

RAW264.7 cells were cultured in 6 wells at a concentration of 5 × 104 / ml. Cells were washed with PBS twice and refreshed 
in 2 ml DEME medium with blank、1% DMSO、17 β -estrodiol 100 nM、10 nM、1 nM respectively. Cells were further incubated 
for 12h and 24h and cell viability was checked by MTT assay. Meanwhile, cells were harvested for real-time PCR analysis. For ICI 
182,780 treatment, the same procedure was performed as above. For each well, we added 17 β -estrodiol 10 nM, 17 β -estrodiol 
10 nM+ICI 182,780 100 nM and incubated for 12h for real-time PCR analysis.

Real-time quantitative PCR

Cells were lysed in 250 μL Trizol (Invitrogen, Carlsbad, USA) and maintained at -80℃. Total RNA was extracted using the 
RNeasy Mini kit (Qiagen, Venlo, The Netherlands). The concentration and purity of RNA were measured using the NanoDrop ND-
1000 spectrophotometer (Thermo, USA). Total RNA (2 μg) was converted into cDNA by the SuperScript First-Strand Synthesis Sys-
tem (Invitrogen) using random hexamers as primers. Real-time PCR was done using the ABI PRISM 7700 Sequence Detector (Life 
Technologies, USA). PCR was performed in a 20 μL reaction mix containing 10 μL SYBR Premix Ex Taq TM II; 0.8 μL forward and 
reverse primer (10 μM) and 6 μL cDNA. Samples were amplified by 95°C for 10 s, followed by 45 cycles at 95°C for 5s, 63.5°C 
for 15s and 72°C for 10s. To standardize the amount of sample RNA, we amplified the endogenous housekeeping gene GAPDH 
as a control. PCR products were electrophoresed on a 1.2% agarose gel to check the fragment size.

Western blot

Cell pellets were lysed in lysis buffer containing 50 mM Tris, 150 mM NaCl, 1% NP40, and 0.25% sodium deoxycholate. 
The following protease and phosphatase inhibitors were added: 4 mM Na3VO4(450243), 1 mM Na4P2O7(P8010), 2 μg/mL 
aprotinin(A6103), 50 μg/mL leupeptin (L2884), 500 μg/mL trypsin inhibitor (T9378), 10 μM benzamidin (12072), 2.5 mM pnp 
benzoate (N8264), 1 mM AEBSF (A8456) and 50 μg/mL pepstatin A (P5318) (all from Sigma), 50 mM NaF (27860.231), 5 mM 
EDTA (20296.260) (both from VWR International, West Chester, PA). Cell debris was removed by centrifugation (5 min, 14000 
rpm) and sample buffer was added. After boiling, the samples were separated on a sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred to PVDF membranes (Bio-Rad, Hercules, CA). The membranes were blocked with PBS 
containing 5% low-fat milk and 0.1% Tween 20. Antibodies against SOCS3 and GAPDH were from Cell Signaling Technology.

Statistical analysis

All experiments were repeated at least 3 times. Date was presented as Mean±SD (standard deviation). The significance 
between groups was determined using the Mann-Whitney U test. The results were considered significant when P<0.05.

RESULTS
To investigate whether estrogen could regulate the expression of SOCS3 in macrophages, we designed the real-time PCR 

primers for SOCS3 gene and GAPDH gene (a housekeep gene control). The sequences of these primers were shown in Table 1. 
After real-time PCR amplifications, we check the specificity of the PCR products by electrophoresis. In the gel it clear showed a 
band at around 366bp for SOCS3 gene (Figure 1). Furthermore, from the dissolve curve we can see a singlet at around 87°, indi-
cating the specificity of the SOCS3 primer (Figure 1).

Table 1. Primer sequences of SOCS3 and GAPDH gene.  

Gene Sequences

SOCS3
forwards CAC AGC AAG TTT CCC GCC GCC
reverse GTG CAC CAG CTT GAG TAC ACA

GAPDH
forwards TCA ACG GCA CAG TCA AGG
reverse ACT CCA CGA CAT ACT CAG C

 
 

Figure 1. The electrophoresis result and the dissolve curve of SOCS3 gene by RT-PCR.
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For the housekeep GAPDH gene, we got a band around 498bp in the gel and a singlet of 87℃ in the dissolve curve (Figure 2).

                                                                                                    

Figure 2. The electrophoresis result and the dissolve curve of GAPDH gene by RT-PCR.

Next, we analyzed the expression of SOCS3 gene in macrophages treated with different concentration of 17β-estrodiol using 
the 2-△△Ct method [17]. The results showed that 17 β -estrodiol could up-regulate SOCS3 gene expression in a concentration depen-
dent manner after 17 β -estrodiol treatment for 12h (Figure 3). Similar results were obtained after 17 β -estrodiol treatment for 
24h in macrophages (Figure 4). Next, we investigated the expression of SOCS3 in macrophages treated with 10 nM 17 β -estrodiol 
by western blot. We used the BCA assay to determine the concentration of the protein samples. We illustrated the standard curve 
of the BCA 

  
Figure 3. SOCS3 expression after 17 β-estrodiol treatment for 12h in macrophages. *P<0.05 VS DMSO; **P<0.01 VS 17 β-estrodiol 1 nM.
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Figure 4. SOCS3 expression after 17 β -estrodiol treatment for 24h in macrophages. *P<0.05 VS DMSO.

Figure  5. Standard curve of BCA measurement.

assay using the standard sample in the kit. The standard curve was described as y=0.2209X2+1.9457X+0.1809 (Figure 5). 
Base on the standard curve we calculated the corresponding concentration of each sample, which was shown in Table 2. 
We quantified the same protein loading for western blot and the results showed that SOCS3 expression increased in macrophages 
after treatment with 10 nM 17 β-estrodiol for 12h and 24h (Figure 6A). Figure 6B shows the corresponding gray analysis for each 
sample, which clear indicates that SOCS3 expression was up-regulated after 17 β -estrodiol simulation.

Group Blank DMSO
17β-estrodiol 10nM

12h 24h
Protein mg/ml 1.621 1.821 1.876 1.952

Table 2. Protein concentration measured by BCA assay.

Figure 6. (A and B) SOCS3 expression in macrophages treated with 10 nM 17 β -estrodiol for 12h and 24h were analyzed by western blot. B 
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indicates the ratio of SOCS3/ β -actin by gray analysis. *P<0.05 VS DMSO.

Next, we wonder whether the up-regulation of SOCS3 expression in macrophages by estrogen simulation was mediated by estrogen 
and estrogen receptor (ER) signaling. We used ICI182780 (a specific inhibitor of estrogen receptor) to block the ER signaling 
when simulating macrophages with estrogen. The real-time PCR results showed that despite inhibiting the estrogen receptor, 
17 β-estrodiol could still up-regulate SOCS3 expression (Figure 7), indicating that the up-regulation of SOCS3 by estrogen was 
through the ER independent signaling. 

  
 Figure 7. The expression of SOCS3 in macrophages after block the ER signaling by 100 nM ICI182780 while adding 10 nM 17 β -estrodiol for 

12h.  * P<0.05 VS DMSO.

DISCUSSION
Matthews et al. reported that estrogen could up-regulate SOCS3 expression in a time-dependent manner in breast cancer 

T47D cells [14]. They demonstrated that SOCS3 mRNA expression increased after 1h treatment with estrogen, and reached to a 
peak after 3h of treatment. 6h later, the SOCS3 expression return to the basal level. Leong et al. demonstrated that SOCS3 mRNA 
expression reaches to a peak at 2h after 100nM estrogen simulation in hepatoma HuH7 cells [13]. While in vivo ovariectomized 
mice experiments, short time estrogen treatment (10h and 48h) could not up-regulate SOCS3 expression in liver tissue. However, 
with long term estrogen treatment (3-5 weeks), SOCS3 mRNA expression in liver tissue was up-regulated [13]. In human embryonic 
kidney cells, Leung et al. reported that estrogen could not up-regulate SOCS3 mRNA expression [19], indicating that up-regulation 
of SOCS3 expression by estrogen simulation exists cellular and histological differences. We first reported in macrophages that 
estrogen simulation could up-regulate SOCS3 expression, we further pointed out that SOCS3 up-regulation was not mediated 
by estrogen receptor signaling. Normally estrogen interacts with estrogen receptor (ER α and ER β) and activate its downstream 
pathway. There are some novel receptors, such as G protein-coupled receptor 30，GPR30 (GPER1), that was reported to activate 
downstream signaling by estrogen simulation [20]. Elisabetta et al. reported the expression of ER α but not ER β expression in 
RAW264.7 cells [21], the same results was found in mice that only ERα was expressed in macrophages cells [22]. In human macro-
phages, not only the ER but also GPER are highly expressed [23], yet there is no data shows the expression of GPER in RAW264.7 
cells. We will further investigate whether the up-regulation of SOCS3 was mediated by estrogen-GPER signaling. Moreover, to 
figure out whether the up-regulation of SOCS3 in macrophages induced by estrogen has a protection role in atherosclerosis and 
the molecular mechanism. 
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